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Mathematics possesses not only truth,
but supreme beauty - a beauty cold
and austere, like that of a sculpture.

Bertrand Russell
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Composite Objects
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{ Definitions ‘

Center of Gravity
Center of Mass
Volume Centroid
Area Centroid

Curve (line) Centroid
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Weights W

Center of gravity

Masses WEgM

g gravitational acceleration

Center of mass

Volumes

p density

Volume centroid

Areas \Wng_,@ELA.

t thin plate thickness

area centroid

1@

Lines \_\ME:&E)@L

a wire cross section

line centroid

In our work we will consider the following

Uniform gravitational field.
density is uniform

Uniform cross section

Thickness of thin plates is uniform




given
[ xedw [y.dw [zdw

3 [aw S [aw

X y

Nea [aw

setting dW=d(gm)=d(gpV)=d(ptA) leadsto ~ A
2 =Ixed(gptA) : =_[yed(gptA) : =IZed(gptA) g__/
- jd(gptA) 4 _[d(gptA) 7 Id(gptA)

now, let us take g, p, and the body thickness t to be uniform and very small all over the body,
then

~ [x.dA

= i [y.da i [z.dA
dA

A [aA : [aA

Yo

where dA Element of area

A =IdA Total area
Thus The Area Centroid Coincides With Its Center of Gravity
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NOTICE

For uniform objects, if there are two or
more lines of SYMMETRY, then the center
of gravity is located on its intersection
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given
[ xedw [y.dw [zdw

3 [aw S [aw

X y

° Jaw
setting  dW =d(gm)=d(pV)=d(paL) leads to

§ =Ixed(gpaL) ; =_[yed(gpaL) 7 Jzed(gpa'—)
- jd(gpaL) 4 _fd(gpaL) E Id(gpaL)

now, let us take g, p, and the wire cross section a to be uniform all over the body, then

XS Jyod REXE

R [dL M= [dL o [dL

where dL Element of length
L=[dL Total length
Thus The Line Centroid Coincides With Its Center of Gravity
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Common Shapes and their centroids
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Example-1
Determine the centroid of the three uniform wires AB, BC, and CA with respect to the x-y
coordinates. All three wires have the same density and cross section

Y
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Solution

=il
Xg =

n
i=1

XL,

L

G

Yo

et 4(0)+3(1.5)+5(1.5)

4+3+5

Zyil—i
e T

=1m
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Example-2

Determine the centroid of the complete quarter circle shown with respect to the x-y
coordinates. All wires have the same density and cross section
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Solution

y

/

\
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Solution

/

y

\
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4

6.3

SRR 14.3

=
Xg =

XL,

L

n
i
i=1

= @ =6.68m

X =
©7. 148
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EXAMPLE-3

Determine the centroid of the body shown. The wire is of uniform density and cross

section

AZ

D

12 m
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SOLUTION

Divide the wire into known sections
1- wire AB

2- wire BC

3- wire CDO
L, =CDO = zr = 3.14(6) =18.85m
7C" - e OMINe)

L X Lx

12 |8
38 4

Lecture 1, Week 1




3- The centroid of the whole wire is then located using;

L

Lx

y

96

6

32

12

0

6
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EXAMPLE-4
A circle of radius 2 m is removed from the uniform area shown.

Determine the location of its centroid with respect to the x and y

coordinates.
y
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Solution

A, =14.14m* A, =-12.57Tm’
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X, =9+4=13m
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X, =9+8+1.27 =18.27m
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X, =9+4=13m

X

6
13

13
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A

27

48
14.14
—12.57
76.57

2. A% g8 03

=115 m

- 76.57
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Example-5

Determine the location of
the centroid with respect
to the x and y coordinates
of the uniform area
shown.
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Home Work

Determine the location of
the centroid with respect
to the x and y coordinates
of the uniform area
shown.
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First moment of Area

The Sl unit for first moment of area is a cubic metre (m3). In the American
Engineering and Gravitational systems the unit is a cubic foot (ft3) or more
commonly inch?3.

The static or statical moment of area, usually denoted by the symbol Q, is a
property of a shape that is used to predict its resistance to shear stress. By
definition:

Qs = f yedA,

where

Q,, - the first moment of area "j" about the neutral x axis of the entire body (not the
neutral axis of the area "j");

dA - an elemental area of area "j";

y - the perpendicular distance to the centroid of element dA from the neutral axis x.
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https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/Metre
https://en.wikipedia.org/wiki/Foot_(length)
https://en.wikipedia.org/wiki/Inch
https://en.wikipedia.org/wiki/Shear_stress

Example

gy s
when the centroid C of an area c:
nent of that area witl a can be located by symmetry, the

first mO! at area with respect to any given axis can be r ’d'\

oy ) STk , ‘ ea

ed from Eqgs. (A.4). For example, in the case of the rectang 1\)’

: angular

obtail

area of Fig. A.6, we have
[

Q. = Ay = (bh)(3h) = 3bH?

and

0, = Ax = (bh)(3b) = 5b*h
. however, it is necessary 10 perform the integrations in-
A.1) through (A.3) to determine the first moments and
area. While each of the integrals involved 1s ac-
it is possible in many applications to select el-
ements of area dA 11 horizontal or vertical strips, and
thus to reduce the computations to integrations in a single variable. This
<illustrated in Example A.01. Centroids of common geometric shapes
are indicated in a table inside the back cover of this book.

[n most €ase
gicated in EGs. (
ihe centroid of a given

a double integral,

wally
) the shape of thin
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Example

C of the area A shown in Fig. A.10.

|

i | ’
60 ‘ | f
_;_t |
20 "‘— ol ’W"‘ 20 - Dimensions in mm
Fig. A.11

Dimensions in mm

Fig. A.10 A
r <
ea, mm? ¥, mm A, mm?®

(20)(80) = 1600 | 79
(40)(60) = 2400 | 30 e

ZA,'=4000 2:45','=]84X103

Selecting the coordinate axes shown in Fig. A.11, we note
that the centroid C' must be located on the y axis, since this
aiis is an axis of symmetry; thus, X = 0.

Dividing A into its component parts A, and A,, we use the = 2 Ay 184 x 10° 3

1 2 i mm
“ond of Eqs. (A.6) to determine the ordinate Y of the e PRVET 46 mm
’f:r"’:md. The actual computation is best carried out in tabular 2 A; 0
2 ‘

\

Lecture 1, Week 1




EXAMPLE A.03

cample
EX. Referring to the area A of Example A.02, we consider the hor-

izontal x’ axis through its centroid C. (Such an axis is calleq
a centroidal axis.) Denoting by A’ the portion of A located
above that axis (Fig. A.12). determine the firs moment of A’
with respect to the x' axis.

Fig. A.12

Solution. We divide the area A’ into its components
A, and A; (Fig. A.13). Recalling from Example A.02 that C is
located 46 mm above the lower edge of A, we determine the
ordinates y{ and y; of A, and Aj; and express the first moment
Oy of A" with respect to x' as follows:

Qv = Ay + Ay
= (20 X 80)(24) + (14 X 40)(7) = 42.3 X 10° mm®
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Area Moments of Inertia
(Second Moment of Area)

Area Moment of Inertia

The Four Area Moments of Inertia
Parallel Axes Theorem

Evaluating Area Moment of Inertia for Composite Shapes
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Area Moment of Inertia

Also known as the second moment of area or second moment of inertia

Measures the resistance of beams to bending and deflection.

The deflection of a beam under load depends not only on the load, but also on the
geometry of the beam's cross-section
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http://en.wikipedia.org/wiki/Bending
http://en.wikipedia.org/wiki/Deflection

Four area moments of inertia defined for a beams cross section

Area moment of inertia y
about the x axis |X
about the y axis |y

Polar area moment of inertia about the z axis |O

Area product moment of inertia |Xy
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Area Moment of Inertia About the x-Axis

By definition

'Using the integration method

Using the radius of gyration

, = [y*dA | =k2A
J
.

|, measures the beams ability to resist bending about the x axis. The larger the Moment of
Inertia the less the beam will bend.

The radius of gyration is the distance k away from the x axis that all the area can be
concentrated to result in the same moment of inertia.

|, IS always positive

Units of I, are m*
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Area Moment of Inertia About the y-Axis

'Using the integration method Raccnnition Using the radius of gyration

l, measures the beams ability to resist bending about the y axis. The larger the Moment of
Inertia the less the beam will bend.

The radius of gyration is the distance k away from the y axis that all the area can be
concentrated to result in the same moment of inertia.

ly is always positive

Units of Iy are m4
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Polar Area Moment of Inertia About the z Axes

The Polar Area Moment of Inertia of a beams cross-sectional area measures the beams
ability to resist torsion. The larger the Polar Moment of Inertia the less the beam will twist.
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Product Area Moment of Inertia

The product of inertia for an area A about the x and y axes is
defined as

Ly = [ xydA

Clearly from the definition of the product of inertia, we
could reverse indices, but still both quantities are equal,
l.e.

It is seen that I,, can either be positive or negative depending on the signs of the x and y
locations with respect to the element area dA.

The manner in which the area of a planar figure is situated in the coordinate quadrants is described by the area
product of inertia. Because 1, is positive if an element of area is located in the first or third quadrant, and negative in

the second or fourth quadrant, we conclude that positive l,, means that area predominates in the first and/or third
quadrants. Obviously, when s is negative, the area predominates in the second and/or fourth quadrants.
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Principle Axes

In the important case where a shape is symmetric
about one of the coordinate axes, the value of xy
for an element to one side of the axis of symmetry
Is canceled by the value xy for the mirror-image
element to the other side.. Thus whenever a
planar shape has an axis of symmetry that is
either the x or y axis, then

=0

Xy
In general, when the x and y coordinates axes give a zero product of inertia we
say that they are principal axes.
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Summary

Always
positive

Area Moment
of inertia about
the x axis

Bending about the x axis. The
larger the moment of inertia, the
less the beam will bend.

Always
positive

Area Moment
of inertia about
the y axis

Bending about the y axis. The
larger the moment of inertia, the
less the beam will bend.

Always
positive

Polar area
moment of
inertia about
the z axis

Twisting (torsion) in beams. The
larger the polar moment of inertia
the less the beam will twist

May be
positive or
negative

Product area of
inertia

When the product of inertia is
zero, at least one the x or y axes
becomes a principle axis.
Representing maximum or
minimum moment of inertia




Parallel Axes Theorem
The parallel axis theorem can be used to determine the area moment of inertia about any
axis, given the area moment of inertia about the parallel axis through the area's centroid and

the perpendicular distance between the axes.

g y
Ix T Ix' i AyG

2 2
|, =1, +AXg

y

L, =l + AXgY e

Xy

% i
= +A(xG +yG)_IX gt

O
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Area Moment of Inertia For Some
Common Cross Sections
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Right triangle
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Right triangle

Product of inertia w.r.t. xy axes as sides

N\

Xy

I =ith
18
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Rectangle
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Complété 7C7i-rclé

A=TTr"
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Half Circle

A= 1 r?
2
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Quarter Circle

A=11'rr2
2
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Example-1
i- Determine the moments and products of inertia for the cross sections shown about the x
and y axes

ii- Determine the moments and products of inertia for the cross sections (b) and (c) about
their centroidal axes

y
1.5m 1.5m
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Solution : (cross section a)

/\y

0.5m 05m
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Remember

Given data

area A=4ab

moments of inertia about centroidal axes

sy
/=_ b A
X 3( )

moments of inertia about x1 and y1 axes

1 2 1 2

L= (20)° A L= (2a)" A

Calculated data
moments of inertia about x and y axes

8 2
IX _IXI _I_ AyC

>Xx1 hi 2
|y—|y, +AXZ

Ly +AXCY

o=
X
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O
i

____r'<__. -
@]

X

N

A, =1x3 = 3m’

Ly =1 +A1(yc1)2

= %(0.5)2(3)+ 3(4.5f =61m*
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O
i

--x-,<-' - .
O %

0.5m 0.5m
A, =1x4 = 4m?

1

1
Ix2 :g

(2b)° A = 5(4)2 4=21.33m*

;)(0.5)2 (4)=0.33m*
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Total area moments of inertia

| =1+, =61+21.33 =82.33m"

y y1

»=2.25+0.33 =2.58m*

Ly =ly1 Ly =0
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Moments of Inertia about the centroidal axes.

_ 4
e T e k—8233T
82.33 =1 +7(3.1) ly =2.98m
T 4 ,, =0

X

- 2 A=A +A,=Tm
|, =1, +AXg

1 2.58 =1, +7(0)*

4m Loy =
y

C(0,3.1)

=, Ix,y, +AX_ Y,

A 4

0.5m 0.5m
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(cross section c)
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(cross section c)

y y'

N

X

A, =2x2 = 4m?

=3 (20" A= 2 (2) (4)=5.33m

1

=1(23)2 A=§(2)2 (4)=5.33m"

y1

=abA=(1)(1)(4)=4m*

x1y1
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Remember

4 1
Given data area A=§hb

moments of inertia about centroidal axes

1 2 1 2 -1
el Saes l...=—hDbA

moments of inertia about x1 and y1 axes
1 =0 2
=g (h) A L (bRt

Calculated data
moments of inertia about x and y axes

1

’”W:Eth

8 2
IX _IXI _I_ AyC

>Xx1 n 2
=1, +Ax2
Ix’y’ i AXCyC

o=
X
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=%(1 5)°(0.15)=0.056m"*

Lo =l +A2(Yc2 )2 Ly2 =Ly "‘Az(xcz )(ycz)

1

| :E(O'2)2(0'15)+ 0.15(1.93)* = 0.56m"* | 1

= £(1 .5)(0.2)0.15)+0.15(0.5)(1.93) = 0.146m*

xy2
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Total area moments of inertia

1, =4.8m*
,—l,, =5.3m*

~I,, = 3.9m*

X

Lecture 1, Week 1




moments and products of inertia about the centroidal axes

A, = 2x2 = 4m’
A, =0.2x1.5/2 = 0.15m?
A=A,-A,
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